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Dynamic stability conditions for Lotka-Volterra recurrent neural networks with delays
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The Lotka-Volterra model of neural networks, derived from the membrane dynamics of competing neurons,
have found successful applications in many ‘‘winner-take-all’’ types of problems. This paper studies the
dynamic stability properties of general Lotka-Volterra recurrent neural networks with delays. Conditions for
nondivergence of the neural networks are derived. These conditions are based on local inhibition of networks,
thereby allowing these networks to possess a multistability property. Multistability is a necessary property of a
network that will enable important neural computations such as those governing the decision making process.
Under these nondivergence conditions, a compact set that globally attracts all the trajectories of a network can
be computed explicitly. If the connection weight matrix of a network is symmetric in some sense, and the
delays of the network are inL2 space, we can prove that the network will have the property of complete
stability.
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I. INTRODUCTION

The Lotka-Volterra model of neural networks was fir
proposed in Ref.@1#. Derived from conventional membran
dynamics of competing neurons, it has found successful
plications in many ‘‘winner-take-all’’ types of problems, se
Refs.@1–3#. Due to the application potential of this class
neural networks, it is necessary and useful to study its g
eral dynamic properties. From an engineering point of vie
the dynamic stability properties of neural networks are p
requisites towards effective applications. It is also import
to be able to choose effective parameters that control
network’s functions.

In this paper, we will study the dynamic stability prope
ties of general Lotka-Volterra recurrent neural networks w
delays. This model can be described by the following n
linear differential equation with delays:

ẋi~ t !5xi~ t !Fhi2xi~ t !1(
j 51

n

$ai j xj~ t !1bi j xj@ t2t i j ~ t !#%G
~ i 51, . . . ,n! ~1!

for t>0, where eachxi denotes the activity of neuroni, A
5(ai j )n3n andB5(bi j )n3n are realn3n matrices, each of
their elements denotes the synaptic weights and repres
the strength of the synaptic connection from neuronj to neu-
ron i, x5(x1 , . . . ,xn)TPRn, hiPRn denotes external inputs
the delayst i j (t) ( i , j 51, . . . ,n) are non-negative continu
ous functions satisfying 0<t i j (t)<t for t>0, wheret>0 is
a constant.

Incorporating delays in neural network models is imp
tant both in theory and applications. In Ref.@4#, Hopfield
realized that in hardware implementations, time delays oc
1063-651X/2002/66~1!/011910~8!/$20.00 66 0119
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due to the finite switching speed of the amplifiers. It
known that delays can affect the dynamic behavior of neu
networks@5,6#. Delayed neural networks have found ma
applications in the processing of moving images, image co
pression@7#, etc. In recent years, neural networks with dela
have been widely studied, see for example,@5–20#. Today,
delays have been widely accepted as important parame
associated with neural network models.

We will address three important properties of the netwo
~1!: nondivergence, global attractivity, and complete stabil
These are important dynamic properties of a neural netw
necessary for effective applications. We are interested to
rive nondivergence conditions that will allow multistability
which is an essential property for certain neural compu
tions @21,22#. Global attractivity is very useful for determin
ing the final behavior of network’s trajectories. We will giv
explicit expressions for calculating the global attractive co
pact sets of the networks. Complete stability describes a k
of convergence characteristics of networks. A complet
stable network may also possess the multistability prope
We will prove the complete stability of the networks by a
suming the delays are inL2 space.

This paper is organized as follows. Preliminaries will
given in Sec. II. Nondivergence and global attractivity w
be studied in Sec. III In Sec. IV, we will study the comple
stability of the networks. Examples will be given in Sec.
and finally, conclusions will be drawn in Sec. VI

II. PRELIMINARIES

In this section, we will give preliminaries for analysis o
the network~1!.

Definition 1. The network~1! is said to be bounded if eac
of its trajectories is bounded.
©2002 The American Physical Society10-1
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Definition 2. Let S be a compact subset ofRn. We denote
thee neighborhoodof Sby Se . The compact setS is said to
globally attract the network~1!, if for any e.0, all trajecto-
ries of Eq.~1! ultimately enter and remain inSe .

A bounded network does not imply it will have glob
attractive sets. For example, consider a simple systemẋ(t)
50 for t>0. Clearly, it is bounded but there does not ex
any compact set to globally attract its trajectories. Howev
if a network possesses global attractive sets, then it mus
bounded.

Denote

R1
n 5$xuxPRn,xi>0 ~ i 51, . . . ,n!%.

Definition 3. A vector x* 5(x1* , . . . ,xn* )TPR1
n is called

an equilibrium point of Eq.~1! in R1
n , if

xi* Fhi2xi* 1(
j 51

n

~ai j 1bi j !xj* G[0 ~ i 51, . . . ,n!.

In this paper, we are interested in the equilibrium poi
which are located inR1

n .
Definition 4. The network~1! is said to be completely

stable, if each of its trajectories converges to an equilibri
point.

We assume the initial condition as

xi~ t !5f i~ t !>0, tP@2t,0#,

f i~0!.0 ~ i 51, . . . ,n!, ~2!

where eachf i is a continuous function defined on@2t,0#.
Lemma 1. Each solutionx(t) of Eq. ~1! with the initial

condition ~2! satisfies

xi~ t !.0 ~ i 51, . . . ,n!

for all t>0.
Proof. Denote

r i~ t !5hi2xi~ t !1(
j 51

n

ai j xj~ t !1(
j 51

n

bi j xj@ t2t i j ~ t !#

for t>0 and (i 51, . . . ,n). Then, from Eq.~1!, we have

xi~ t !5f i~0!expE
0

t

r i~s!ds.0 ~ i 51, . . . ,n!

for t>0. This completes the proof.
Lemma 1 shows an interesting property; if the initial co

dition satisfies Eq.~2!, then the corresponding trajector
stays in positive domain ofRn. This property will allow us,
in the following section, to use local inhibitions to guarant
nondivergence of the network~1!.

Throughout this paper, for any constantcPR, we denote

c15max~0,c!.

A continuous functionf (t) defined on@0,1`) is said to be
in L2 space, if

E
0

1`

f 2~s!ds,1`.
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III. NONDIVERGENCE AND GLOBAL ATTRACTIVITY

The trajectories of the Lotka-Volterra neural network~1!
may diverge. For example, consider the simple o
dimensional network

ẋ~ t !5x~ t !@112x~ t !#

for t>0. Given anyx(0).0, it follows that

x~ t !

112x~ t !
5

x~0!

112x~0!
et

for t>0. Takingx(0)51 in particular, it is easy to see tha
x(t) diverges att5 ln(3/2).

Nondivergence is a basic enabling property for recurr
neural networks in practical applications. It is necessary
derive conditions for nondivergence of the network~1!. The
classical method to obtain conditions of nondivergence is
restrict the weights to be sufficiently small, see for exam
@20,23#. However, these conditions imply global conve
gence, that is all the trajectories of a network converge to
equilibrium point. Thus, the network is actually monostab
In Ref. @21#, it is pointed out that monostable networks a
computationally restrictive: they cannot deal with importa
neural computations such as those governing the deci
making process. There are many applications in which
multistability property is a necessary condition. In Re
@21,22#, multistability for neural networks with unsaturatin
piecewise linear transfer functions are studied. The nondi
gence conditions that we will present in the following allo
for such multistable behavior. This will be achieved by a
plying local inhibition to the network’s weights.

Theorem 1. If there exist constantsg i.0(i 51, . . . ,n)
such that

b i5
D

12aii 2
1
g i

(
j 51

n

g j@ai j
1~12d i j !1bi j

1#.0

~ i 51, . . . ,n!,

where

d i j 5H 1, i 5 j

0, iÞ j ,

then the network~1! is bounded. Moreover, the compact s

S5H xU0<xi<g i max
1< j <n

H hj

b j
,0J ~ i 51, . . . ,n!J

globally attracts the network~1!.
Proof. We will first show that the network~1! is bounded.

Clearly,

xi~ t !H >0, 2t<t,0

.0, t>0 ~ i 51,•••,n!.

Then, from Eq.~1!, we have
0-2
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ẋi~ t !<xi~ t !Fhi2~12aii !xi~ t !1(
j 51

n

$ai j
1~12d i j !xj~ t !

1bi j
1xj@ t2t i j ~ t !#%G ~3!

for t>0 and (i 51, . . . ,n).
Define

zi~ t !5
xi~ t !

g i
~ i 51, . . . ,n!,

for t>2t. Obviously,

zi~ t !H >0, 2t<t,0

.0, t>0 ~ i 51, . . . ,n!.

Moreover, from Eq.~3!, we have

żi~ t !<xi~ t !Fhi2~12aii !zi~ t !1
1

g i
(
j 51

n

g j$ai j
1~12d i j !zj~ t !

1bi j
1zj@ t2t i j ~ t !#%G ~4!

for t>0.
Denote

ufu5 max
1< i<n

@ sup
2t<s<0

f i~s!#,

and

P5 max
1< i<n

H 1

g i
J max

1< i<n
H UfU11,

hi

b i
J .

We will prove that

zi~ t !,P ~ i 51, . . . ,n!, ~5!

for all t>0. Otherwise, if Eq.~5! is not true, sincezi(t)
<ufu/g i,P, (i 51, . . . ,n) for tP@2t,0#, there must
exist at1.0 such thatżi(t1)>0 and

zi~ t1!5P; zj~ t !H ,P, 2t<t,t1 , i 5 j

<P, 2t<t<t1 , iÞ j .

However, from Eq.~4!, we have

żi~ t1!<xi~ t1!Fhi2~12ai j !P1
1

g i

3(
j 51

n

g j@ai j
1~12d i j !P1bi j

1P#G
5xi~ t1!~hi2b iP!

,0.
01191
This poses a contradiction and it implies that Eq.~5! is true.
Thus, the network~1! is bounded.

Next, we will prove the global attractivity of the network
Denote

m5 max
1< i<n

H hi

b i
,0J .

Given any e.0, clearly, we can choose a constanth.0
such that

12aii 2b i

b i
h<

e

2
~ i 51, . . . ,n!. ~6!

Let N be the first non-negative integer such thatm1e
1Nh>P.

Define

tk5kT* , k51,2, . . . ,N,

where

T* 5t1
2

bge
lnS 2P

m1e D , b5 min
1< i<n

$b i%, g5 min
1< i<n

$g i%.

We will prove that

zi~ t !<m1e1~N2k!h, t>tk , ~7!

for k50,1,2, . . . ,N by mathematical induction.
By Eq. ~5!, clearly, Eq.~7! holds for k50. Suppose Eq.

~7! holds for somek(0<k,N), i.e.,

zi~ t !<m1e1~N2k!h ~ i 51, . . . ,n! ~8!

for t>tk . We will prove

zi~ t !<m1e1~N2k21!h ~ i 51, . . . ,n! ~9!

for t>tk11.
We will use two steps to prove Eq.~9!. In the first step, let

us prove that there exists at̄ P@ tk1t,tk11# such that

zi~ t̄ !<m1e1~N2k21!h ~ i 51, . . . ,n!. ~10!

Suppose Eq.~10! is not true, then there must exist somei
such that

zi~ t !.m1e1~N2k21!h.m1e, ~11!

for all tP@ tk1t,tk11#. From Eq.~8! and ~11!, we have

sup
t2t<u<t

zj~u!<m1e1~N2k!h,zi~ t !1h

~ j 51, . . . ,n! ~12!

for tP@ tk1t,tk11#. Then, fortP@ tk1t,tk11#, we have from
Eqs.~4!, ~12!, ~11!, and~6! that
0-3
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d ln zi~ t !

dt
<g iFhi2~12aii !zi~ t !1(

j 51

n

$ai j
1~12d i j !zj~ t !1bi j

1zj@ t2t i j ~ t !#%G
<g iFhi2~12aii !zi~ t !1(

j 51

n

@ai j
1~12d i j !1bi j

1#@zi~ t !1h#G
<g i$hi2~12aii !zi~ t !1~12aii 2b i !@zi~ t !1h#%<g i@hi2b izi~ t !1~12aii 2b i !h#

<g ib iF hi

b i
2~m1e!1

12aii 2b i

b i
hG

<g ib iF hi

b i
2~m1e!1

e

2G
<2

eb ig i

2

<2
ebg

2
.

Thus,

ln zi~ tk11!2 ln zi~ tk1t!<2
ebg

2
~T* 2t!,

and so

zi~ tk11!<zi~ tk1t!e2(ebg/2)(T* 2t)

<PexpF2 lnS 2P

m1e D G
5

m1e

2
.

This contradicts Eq.~11!. Therefore, Eq.~10! is true.
01191
In the second step, we will prove that

zi~ t !<m1e1~N2k21!h ~ i 51, . . . ,n! ~13!

for all t> t̄ . Otherwise, there must exist at̂. t̄ and somei
such that

zi~ t̂ !.m1e1~N2k21!h, żi~ t̂ !.0. ~14!

From Eq.~8! and ~14!,

zj~u!<m1e1~N2k!h,zi~ t̂ !1h ~ j 51, . . . ,n!

~15!

for u>tk . Thus, from Eqs.~4!, ~15!, and~6!, it follows that
żi~ t̂ !<xi~ t̂ !Fhi2~12aii !zi~ t̂ !1(
j 51

n

$ai j
1~12d i j !zj~ t̂ !1bi j

1zj@ t̂2t i j ~ t̂ !#%G
<xi~ t̂ !Fhi2~12aii !zi~ t̂ !1(

j 51

n

@ai j
1~12d i j !1bi j

1#@zi~ t̂ !1h#G
<xi~ t̂ !@hi2~12aii !zi~ t̂ !1~12aii 2b i !@zi~ t̂ !1h##

<xi~ t̂ !@hi2b izi~ t̂ !1~12aii 2b i !h#5xi~ t̂ !b iF hi

b i
2~m1e!1

12aii 2b i

b i
hG

<2xi~ t̂ !
eb i

2

,0,
0-4
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which contradicts Eq.~14!. This proves that Eq.~13! is true.
Sincetk11> t̄ , then using Eq.~13!, it follows that Eq.~9!

holds. By mathematical induction, Eq.~7! must be true. This
completes the proof of Eq.~7!.

Taking k5N in Eq. ~7!, we have

zi~ t !<m1e, ~ i 51, . . . ,n!

for all t>tN . Thus, it follows that

xi~ t !<g i•~m1e! ~ i 51, . . . ,n!

for all t>0. This shows that the setS globally attracts the
trajectories of Eq.~1!. This completes the proof.

The conditions for nondivergence given in Theorem
use the local inhibition of the network~1!, i.e., we only use
part of the weights of the network to achieve nondivergen
Due to this fact, the network is allowed to have the prope
of multistability. Examples in Sec. V will further confirm thi
point. It is interesting that following Theorem 1, the glob
attractive compact set can be calculated explicitly.

If we let g i51(i 51, . . . ,n) in Theorem 1, then it gives
an especially simple results.

Corollary 1. If

b̄ i5
D

12aii 2(
j 51

n

@ai j
1~12d i j !1bi j

1#.0 ~ i 51, . . . ,n!,

where

d i j 5H 1, i 5 j

0, iÞ j ,

then the network~1! is bounded. Moreover, the compact s

S5H xU0<xi< max
1< j <n

H hj

b̄ j

,0J ~ i 51, . . . ,n!J ,

globally attracts the network~1!.

IV. COMPLETE STABILITY

In certain applications, a network which possess the n
divergence property is not sufficient. More desirable d
namic properties are required to enable the network to
01191
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effectively used. Convergence is one of the most import
properties of a recurrent neural network towards appli
tions. In this section, we analyze the complete stability of
network~1!. Complete stability requires that every trajecto
of a network converges to an equilibrium point. This pro
erty guarantees a network to work well without exhibitin
any oscillations or chaotic behavior. In addition, a compl
stable network may possess multistability property. Sta
and unstable equilibrium points may coexist in a complet
stable network. This property has its important applicatio
in certain networks@22#. Complete stability analysis fo
other models of neural networks could be found
@4,10,17,24#.

Theorem 2. Suppose the network~1! is bounded. If there
exists a diagonal matrixD with positive elements such tha
the matrixD(A1B) is symmetric, and

t i j ~ t !PL2 ~ i , j 51, . . . ,n!, ~16!

then the network~1! is completely stable.
Proof. Since the network is bounded, there exists a c

stantc.0 such that

0,xi~ t !<c ~ i 51, . . . ,n!

for t>0. From Eq. ~1!, clearly, ẋi(t)( i 51, . . . ,n) are
bounded. Then, there exists a constantm.0 such that

uẋi~ t !u<m ~ i 51, . . . ,n! ~17!

for t>0.
Constructing an energy function

E~ t !52HTDx~ t !1
1

2
xT~ t !D~ I 2A2B!x~ t ! ~18!

for t>0, where I is the n3n identity matrix, and H
5(h1 , . . . ,hn)T. SupposeD5diag(d1 , . . . ,dn), clearly, di
.0(i 51,•••,n). Using the fact thatD(A1B) is symmetric,
from Eqs.~18! and ~1!, we have
0-5
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Ė~ t !52(
i 51

n

diS hi2xi~ t !1(
j 51

n

~ai j 1bi j !xj~ t !D ẋi~ t !

52(
i 51

n

diS hi2xi~ t !1(
j 51

n

$ai j xj~ t !1bi j xj@ t2t i j ~ t !#% D ẋi~ t !1(
i 51

n

(
j 51

n

dibi j S E
t

t2t i j (t)

ẋi~s!dsD ẋi~ t !

52(
i 51

n

di

ẋi
2~ t !

xi~ t !
1(

i 51

n

(
j 51

n

dibi j S E
t

t2t i j (t)

ẋi~s!dsD ẋi~ t !

<2(
i 51

n

di

ẋi
2~ t !

xi~ t !
1(

i 51

n

di (
j 51

n

ubi j uS E
t2t i j (t)

t U ẋi~s!UdsD uẋi~ t !u

<2(
i 51

n
di

c
ẋi

2~ t !1(
i 51

n

di (
j 51

n

ubi j umt i j ~ t !uẋi~ t !u

52(
i 51

n
di

c
ẋi

2~ t !1(
i 51

n

di (
j 51

n S bi j
2 m2nc

2
t i j

2 ~ t !1
ẋi

2~ t !

2nc
D

52(
i 51

n
di

2c
ẋi

2~ t !1(
i 51

n

(
j 51

n dincbi j
2 m2

2
t i j

2 ~ t !

<2di ẋ~ t !i21h(
i 51

n

(
j 51

n

t i j
2 ~ t !
on

h

fin-
ble,
for t>0, where

d5 min
1< i<n

H di

2cJ , h5 max
1< i , j <n

H dincbi j
2 m2

2 J .

Denote

Ẽ~ t !5E~ t !2h(
i 51

n

(
j 51

n E
0

t

t i j
2 ~s!ds, t>0.

Then,

Ė̃~ t !<2di ẋ~ t !i2 ~19!

for t>0. Clearly,Ẽ(t) is monotone decreasing. SinceE(t) is
bounded and following Eq.~16!,

E
0

1`

t i j
2 ~s!ds,1` ~ i , j 51, . . . ,n!,

then, Ẽ(t) must be bounded. Thus, there must exist a c
stantẼ0 such that

lim
t→1`

Ẽ~ t !5Ẽ0 .

From Eq.~19! we have,

i ẋ~ t !i2<2
1

d
Ė̃~ t !,
01191
-

for t>0. Then,

E
0

1`

i ẋ~s!i2ds<
1

d
@Ẽ~0!2 lim

t→1`

Ẽ~ t !#

5
1

d
@E~0!2Ẽ0#,1`. ~20!

From Eq.~17!, ẋi(t) ( i 51, . . . ,n) are bounded, then eac
xi(t) is uniformly continuous on@2t,1`). From Eq.~1!, it
follows that eachẋi(t) and theni ẋ(t)i2 is uniformly con-
tinuous on@0,1`). Using Eq.~20!, it must follow that

lim
t→1`

i ẋ~ t !i250,

and so

lim
t→1`

ẋi~ t !50 ~ i 51, . . . ,n!.

Clearly, there must exist a constant vectorx* PR1
n such that

lim
t→1`

x~ t !5x* .

It is easy to check thatx* is an equilibrium point of Eq.~1!
in R1

n . This completes the proof.
The condition~16! requires that the delays are in theL2

space. Thus, the delays will decay as time approaches in
ity. Decaying of delays in neural networks seems reasona
0-6
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since delays occur usually at the beginning of the operat
of networks due to the hardware characteristics such
switching delays, parameter variability, parasitic capacitan
and inductance, etc.

If we let D5I in Theorem 2, we have following simpl
result.

Corollary 2. Suppose the network~1! is bounded. If (A
1B) is a symmetrical matrix, and

t i j ~ t !PL2, ~ i , j 51, . . . ,n!

then the network~1! is completely stable.

V. EXAMPLES

In this section, we will employ some examples to furth
illustrate the above theory.

Example 1. Consider the two-dimensional network

ẋ1~ t !5x1~ t !$32x1~ t !10.5x1~ t !2x2@ t2t1~ t !#%,

ẋ2~ t !5x2~ t !$32x2~ t !2x1@ t2t2~ t !#10.5x2~ t !% ~21!

for t>0, where t i(t) ( i 51,2) are bounded non-negativ
continuous functions. It is easy to check that the conditio
of Theorem 1 are satisfied. Thus, it is bounded. By Theor
1, it can be calculated that there is a compact set

S5$0<x1<6; 0<x2<6%,

which globally attracts all the trajectories of the netwo
Clearly, all the equilibrium points inR1

2 of the network must
be located in the setS. In fact, we can calculate that thi
network has four equilibrium points inR1

2 . They are (0,0),
(6,0), (0,6), and (2,2). Clearly, they are all located inS. If
t i(t)PL2 ( i 51,2), sayt i(t)5e2t ( i 51,2), then the condi-
tions of Theorem 2 are satisfied and the network~21! is
completely stable.

Figure 1 shows the simulation results of the global attr
tivity and complete stability of the network. For the conv

FIG. 1. Global attractivity and complete stability.
01191
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nience of simulation, we assumet i(t)[0 (i 51,2). The part
contained in the square shown in the figure is the setS. It
contains all the equilibrium points of the network~21!.
Among these equilibrium points, (6,0) and (0,6) are stab
while (0,0) and (2,2) are unstable. This example also sho
that in a completely stable neural network, stable and
stable equilibrium points can coexist in the network. Existi
unstable directions in the state space of a neural network
essential for certain neural computations@22#.

Example 2. Consider the following ten-dimensiona
Lotka-Volterra neural network with one delay,

ẋi~ t !5xi~ t !Fhi2xi~ t !2 (
j 51,j Þ i

n

$xj~ t !1xj@ t2t~ t !#%G ,

~ i 51, . . . ,10!, ~22!

FIG. 2. Convergence of network with delayt(t)5e2t.

FIG. 3. Convergence of network without delay.
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Z. YI AND K. K. TAN PHYSICAL REVIEW E 66, 011910 ~2002!
for t>0, wherehi50.5(112 i ) ( i 51, . . . ,10), and thedelay
t(t)5e2tPL2. This network satisfies the conditions o
Theorem 1 and Theorem 2. It is completely stable. Figur
shows the simulation results for the convergence of the
jectory with initial condition f i51 (i 51, . . . ,10) for t
P@21,0#.

If we let the delayt(t)[0 in the network~22!, this net-
work can perform as a ‘‘winner-take-all’’ function@1–3#.
Figure 3 shows the corresponding delay-free simulation
sult to Fig. 2.

VI. CONCLUSIONS

In this paper, we have studied the dynamic stability
general recurrent Lotka-Volterra neural networks with d
lays. We have addressed three basic dynamical propertie
this class of networks: nondivergence, attractivity, and co
plete stability. The class of networks, considered in this
per, possess the property that the trajectories will remai
w

, I

l.

l.

01191
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-
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the positive regime if the initial conditions are positive. U
ing this property together with the development of function
differential equation theory, we are able to establish Theor
1 that provides conditions for nondivergence and global
tractivity based on local inhibition of the networks. Und
these nondivergence conditions, the global attractive set
the networks can be explicitly calculated. The conditio
given in Theorem 1 are sufficient conditions. It may be po
sible and will be interesting to further relax these conditio
to be both necessary and sufficient.

In Theorem 2, with some sense of symmetry conditio
attached to the networks connection matrix, complete sta
ity of the network can be achieved, by assuming the del
are in theL2 space. It requires the delays to decay along w
the evolution of time. This decaying delay assumption is
reasonable assumption used in certain applications. An in
esting area for further exploration is to establish if the n
work can still retain the complete stability property when t
condition that the delays are inL2 space is removed.
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