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Dynamic stability conditions for Lotka-Volterra recurrent neural networks with delays
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The Lotka-Volterra model of neural networks, derived from the membrane dynamics of competing neurons,
have found successful applications in many “winner-take-all” types of problems. This paper studies the
dynamic stability properties of general Lotka-Volterra recurrent neural networks with delays. Conditions for
nondivergence of the neural networks are derived. These conditions are based on local inhibition of networks,
thereby allowing these networks to possess a multistability property. Multistability is a necessary property of a
network that will enable important neural computations such as those governing the decision making process.
Under these nondivergence conditions, a compact set that globally attracts all the trajectories of a network can
be computed explicitly. If the connection weight matrix of a network is symmetric in some sense, and the
delays of the network are ih? space, we can prove that the network will have the property of complete
stability.
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[. INTRODUCTION due to the finite switching speed of the amplifiers. It is
known that delays can affect the dynamic behavior of neural

The Lotka-Volterra model of neural networks was first networks[5,6]. Delayed neural networks have found many
proposed in Ref[1]. Derived from conventional membrane applications in the processing of moving images, image com-
dynamics of competing neurons, it has found successful agressior{7], etc. In recent years, neural networks with delays
plications in many “winner-take-all” types of problems, see have been widely studied, see for exampk;-20]. Today,
Refs.[1-3]. Due to the application potential of this class of delays have been widely accepted as important parameters
neural networks, it is necessary and useful to study its gerassociated with neural network models.
eral dynamic properties. From an engineering point of view, We will address three important properties of the network
the dynamic stability properties of neural networks are pre{1): nondivergence, global attractivity, and complete stability.
requisites towards effective applications. It is also importaniThese are important dynamic properties of a neural network,
to be able to choose effective parameters that control theecessary for effective applications. We are interested to de-
network’s functions. rive nondivergence conditions that will allow multistability,

In this paper, we will study the dynamic stability proper- which is an essential property for certain neural computa-
ties of general Lotka-Volterra recurrent neural networks withtions[21,22). Global attractivity is very useful for determin-
delays. This model can be described by the following noning the final behavior of network’s trajectories. We will give
linear differential equation with delays: explicit expressions for calculating the global attractive com-

pact sets of the networks. Complete stability describes a kind

_ n of convergence characteristics of networks. A completely
X;(t)=x;(t) hi—xi(t)+z {ayx;(t) + by x;[t—7;; (D) I} stable network may also possess the multistability property.
=1 We will prove the complete stability of the networks by as-
(i=1,...n) (1 suming the delays are in? space.

This paper is organized as follows. Preliminaries will be
for t=0, where eaclx; denotes the activity of neuron A given in Sec. Il. Nondivergence and global attractivity will
= (@j)nxn andB= (bjj)nxn are realnxn matrices, each of be SFL_Jdied in Sec. lll In Sec. IV, we W_iII study the.complete
their elements denotes the synaptic weights and represerability of the networks. Examples will be given in Sec. V,
the strength of the synaptic connection from neiramneu-  and finally, conclusions will be drawn in Sec. VI

roni, x=(xy, ... X,) ' €R", h;e R"denotes external inputs,

the delaygrij(t) .(i ,j-=l, ... n) are non-negative conti_nu- Il PRELIMINARIES

ous functions satisfying € 7;;(t)< 7 for t=0, wherer=0 is

a constant. In this section, we will give preliminaries for analysis of
Incorporating delays in neural network models is impor-the network(1).

tant both in theory and applications. In R¢&], Hopfield Definition 1 The network(1) is said to be bounded if each

realized that in hardware implementations, time delays occuof its trajectories is bounded.
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Definition 2 Let She a compact subset &'. We denote [ll. NONDIVERGENCE AND GLOBAL ATTRACTIVITY
the e neighborhoodf Shy S,. The compact sesis said to
globally attract the networkl), if for any €>0, all trajecto-
ries of Eq.(1) ultimately enter and remain I8, .

A bounded network does not imply it will have global
attractive sets. For example, consider a simple systéh X(t)=x(t)[1+2x(t)]
=0 for t=0. Clearly, it is bounded but there does not exist
any compact set to globally attract its trajectories. Howeverfor t=0. Given anyx(0)>0, it follows that
if a network possesses global attractive sets, then it must be
bounded. x(t)  x(0)

Denote 1+2x(t)  1+2x(0)°

RT={x|xeR"x;=0 (i=1,...n)}.

The trajectories of the Lotka-Volterra neural netwa@ik
may diverge. For example, consider the simple one-
dimensional network

t

for t=0. Takingx(0)=1 in particular, it is easy to see that
Definition 3 A vectorx* =(x}, ... x*)TeR" is called x(t) diverges at=In(3/2).
an equilibrium point of Eq(1) in R, if Nondivergence is a basic enabling property for recurrent
neural networks in practical applications. It is necessary to
derive conditions for nondivergence of the netw¢tk The
classical method to obtain conditions of nondivergence is to
restrict the weights to be sufficiently small, see for example
In this paper, we are interested in the equilibrium pointg20,23. However, these conditions imply global conver-
which are located iR", . gence, that is all the trajectories of a network converge to an
Definition 4 The network(1) is said to be completely equilibrium point. Thus, the network is actually monostable.
stable, if each of its trajectories converges to an equilibriumin Ref. [21], it is pointed out that monostable networks are
point. computationally restrictive: they cannot deal with important
We assume the initial condition as neural computations such as those governing the decision
_ making process. There are many applications in which a
Xi()=¢i()=0, te[-70], multistability property is a necessary condition. In Refs.

n

x* hi—xi’*JrJZl (a;+bi)xF |=0 (i=1,...n).

$(0)>0 (i=1,...n), (2  [21,22, multistability for neural networks with unsaturating
] ] ) ] piecewise linear transfer functions are studied. The nondiver-
where eachp, is a continuous function defined ¢r-7,0].  gence conditions that we will present in the following allow
Lemma 1 Each solutionx(t) of Eq. (1) with the initial  for such multistable behavior. This will be achieved by ap-
condition (2) satisfies plying local inhibition to the network’s weights.
xi(H)>0 (i=1,...n) Theorem 1 If there exist constanty,>0(i=1,... )
such that
for all t=0. .
Proof. Denote A 1
Bi=1—a;— - > ¥laj(1-8;)+b;j]1>0
n n Yi=1
ri(t):hi_xi(t)"';l aij><j('f)+lz1 bijxj[t—7;(1)] (i=1,...)n),
fort=0 and (=1, ... n). Then, from Eq(1), we have where
t . 1, i=]
xi(t)=d>i(0)expf ri(s)ds>0 (i=1,...n) 8= L
0 0, i#j,
for t=0. This completes the proof. . o then the network1) is bounded. Moreover, the compact set
Lemma 1 shows an interesting property; if the initial con-
dition satisfies Eq.(2), then the corresponding trajectory h; ]
stays in positive domain dR". This property will allow us, S={ x|0=xj=7; max F'O (i=1,...n)
in the following section, to use local inhibitions to guarantee 1=j=ntHl

nondivergence of the netwoid).

Throughout this paper, for any constant R, we denote  9lobally attracts the networkl). _
Proof. We will first show that the networkl) is bounded.

c"=max0,). Clearly,

A continuous functiorf(t) defined on 0,+ ) is said to be

. . =0, —7<t<0
in L? space, if Xi(t)[ T

. >0, t=0 (i=1,--,n).
f f2(s)ds< + .
0 Then, from Eq.(1), we have
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Xj(t)=x(t)

hi—(l—an)xi(t)JrJZl {ai (1= )%V

)

+hyix[t—7; ()]}

fort=0 and (=1,... n).
Define

zi(t)=& (i=1,...n),

I
for t=— 7. Obviously,

=0, —7=t<0

Z|(t)( t=0 (|=1,,n)

>0,

Moreover, from Eq(3), we have

1 n
hi—(1-a;)z(t)+ — 21 yi{ai (1= 6j)z(1)

z(t)=x(t) 7

+b;zi[t— 7 ()]} (4)

for t=0.
Denote

[¢|= max[ sup ¢i(s)],

1<isn —r=s=<0
and

1
1I= max{—} max
1<i=nl Vi) 1=i=n

¢

fh
'Bi

We will prove that
z(tH)<Il (i=1,...)n), (5)

for all t=0. Otherwise, if Eq.(5) is not true, sincez;(t)

<|¢|ly;<Il, (i=1,...n) for te[—7,0], there must
exist at;>0 such thatz;(t;)=0 and
I <II, —r<t<ty, i=j
zi(ty) =11, z(t) SN, —r=t=t,, i%].

However, from Eq(4), we have

Zi(ty)<x(ty)

1
hi—(l—aij)l_H—;i

n

xjgl yila (1= &) +b; 1]

=Xi(ty)(h;— BiII)
<0.
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This poses a contradiction and it implies that Es).is true.
Thus, the network1) is bounded.

Next, we will prove the global attractivity of the network.
Denote

7]
m= max{—,0¢.

1<isnlPi

Given any e>0, clearly, we can choose a constayit-0
such that

l1-a—B €
—— =5 (i=1,...n). 6
5 =2 ( ) (6)
Let N be the first non-negative integer such that-e
+Nzn=I1.
Define
tk:kT*, k:1,2,...N,
where
Tre 2o 2] p= minig) ()
=7+ —— , = min {B;i}, = min {v;
Bye \mte 1<i=n I Y 1<i=n 7
We will prove that
Zl(t)gm‘i‘f‘i‘(N_k)?], t?tk, (7)

for k=0,1,2 ... ,N by mathematical induction.
By Eq. (5), clearly, Eq.(7) holds fork=0. Suppose Eq.
(7) holds for somek(0<k<N), i.e.,

z(t)ysm+e+(N-Kk)yn (i=1,...)n) (8
for t=t,. We will prove
z(t)sm+e+(N-k=-21)n (i=1,...n) 9

for t=t, ;.
We will use two steps to prove E(). In the first step, let

us prove that there existstae [t,+ 7,t, . 1] such that

z()<m+e+(N—k-1) (i=1,...n). (10

Suppose Eq(10) is not true, then there must exist some
such that

z(t)>m+e+(N—k—1)p>m+e, (11

for all t e [ty+ 7t 1]. From Eq.(8) and(11), we have

sup zj(@)sm+e+(N—K)np<z(t)+n

t—r=o<t

(j=1,...n) (12)

forte[ty+ 7ty 1]. Then, fort e[t + 7,14 1], we have from
Egs.(4), (12), (11), and(6) that
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dinz(t)
dt

<Y

<Y

hi—(l—an>zi<t>+j§l {a] (1= 8;)z;(t) +b; z[t—7;(1) ]}

hi=(1=a)z(h)+ 2 [aj (1= &) +bj [z (1) + 7]

PHYSICAL REVIEW E 66, 011910(2002

<yi{hi—(1—a;)z(t)+ (1—a; — B[z (1) + nl}<y[hi— Biz(t)+ (1—a;— Bi) 7]

h.
Syiﬁi[§—<m+e>+

g?’iﬁi[——(erf)Jrg

Bi
€Bii
S_
2
€Ly
=s——F.
2
Thus,
€
In Zi(tk+1)_ In z(t+ 7)< _?(T* — 1),
and so

Zi(tes ) <Z(t+ e (FrAT =)

211
<Ilexpg —In T e

m+e
2

This contradicts Eq(11). Therefore, Eq(10) is true.

1-a— B
il L

z(D)=x(1)

<x;()

hi—<1—an>zi<f>+j§1 [a(1-8;)+b; [zi(1)+ 7]

In the second step, we will prove that
z(t)sm+e+(N-k=-21)n (i=1,..., n) (13

for all t=t. Otherwise, there must existia>t and somei
such that

z(H)>m+e+(N—-k—1)5, z(t)>0. (14)
From Eq.(8) and (14),
zi(9)<m+e+(N-K)p<z(D+7n (j=1,...| n)

(19
for 6=t,. Thus, from Eqgs(4), (15), and(6), it follows that

hi—<1—an>zi<f>+j§1 {aﬁ(l—5ij>z,-<f>+bgz,-[f—m(b]}}

<x(D[h—(1—a))z(t)+(1—a; — B[z (1) + 71]

<x(O[hi— Bizi(1) +(1—a;— B) 7]=x(1) B

€Bi

S—Xi(f)T

<0,

:8| Bi

e 2
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which contradicts Eq(14). This proves that Eq13) is true.  effectively used. Convergence is one of the most important
Sincet, ., ;=t, then using Eq(13), it follows that Eq.(9) properties of a recurrent neural network towards applica-
holds. By mathematical induction, E(f) must be true. This tions. In this section, we analyze the complete stability of the
completes the proof of Eq7). network(1). Complete stability requires that every trajectory
Takingk=N in Eq. (7), we have of a network converges to an equilibrium point. This prop-
erty guarantees a network to work well without exhibiting

any oscillations or chaotic behavior. In addition, a complete

z()sm+e, (i=1,...n) stable network may possess multistability property. Stable

and unstable equilibrium points may coexist in a completely

stable network. This property has its important applications

for all t=ty. Thus, it follows that in certain networks[22]. Complete stability analysis for
other models of neural networks could be found in
[4,10,17,23.
Xi(H)<y-(m+e) (i=1,...n) Theorem 2 Suppose the networld) is bounded. If there

exists a diagonal matriB® with positive elements such that
the matrixD(A+ B) is symmetric, and
for all t=0. This shows that the s& globally attracts the
trajectories of Eq(1). This completes the proof.
The conditions for nondivergence given in Theorem 1
use the local inhibition of the netword), i.e., we only use

2 (i
part of the weights of the network to achieve nondivergence. r(tel® (i,j=1,...n), (16)
Due to this fact, the network is allowed to have the property
of multistability. Examples in Sec. V will further confirm this
point. It is interesting that following Theorem 1, the global _
attractive compact set can be calculated explicitly. then the network1) is completely stable. _
If we let y;=1(i=1, ... n) in Theorem 1, then it gives Proof. Since the network is bounded, there exists a con-
an especially simple results. stantc>0 such that
Corollary 1. If
_A " o<x(t)sc (i=1,...n)
ﬂi=1—an—j§l [af(1-6))+b1>0 (i=1,...n),
where for t=0. From Eq. (1), clearly, x;(t)(i=1,...n) are

bounded. Then, there exists a constaxyt 0 such that

1, i=]

%= 0, i#j, .
IX[()|=m (i=1,...n) 17
then the networK1l) is bounded. Moreover, the compact set
for t=0.
h. Constructing an energy function
S={x|0=x;< max{—=,0{ (i=1,...n)},

1<j=n ,Bj

globally attracts the networkl). E(t)= — HTDX(t) + %XT(I)D(l CA-BX() (18

IV. COMPLETE STABILITY
for t=0, wherel is the nXn identity matrix, andH
In certain applications, a network which possess the non=(h, ... h,)". SupposeD =diag(d,, . . . ,d,), clearly, d;
divergence property is not sufficient. More desirable dy->0(i=1,---,n). Using the fact thab (A+B) is symmetric,
namic properties are required to enable the network to b&om Eqgs.(18) and(1), we have
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n n
E(t)= E ( mw+§;wmmmMuﬂmm
- e

n n _ n n — _
_;l di(hi_xi(t)+jzl {aijxj(t)+bijxj[t_Tij(t)]}>xi(t)+i_zl 1_21 dibij( jt ] Xi(S)ds)Xi(t)

xi(s)

d%vmn

d; b2m?nc X2(t)
233 O+ 2 d, ('2 Tﬂ”*z%)

2 2

d, "2 dinck?
2-— X2(1) + 212-—J5—wmn
< 2¢ e 2

for t=0, where for t=0. Then,
_[d dincbim? o )
S= minjy=—f, 7= max |{———. f Ix(s)] ds<—[E(0)— lim E(t)]
1<i<n 2c 1<i,j<n 2 0 t— +oo
1 ~
benote —SIEO)-El<+= (0
E()=E()~ ’72 Z 1"J(S)OIS t=0. From Eq.(17), x;(t) (i=1, ... n) are bounded, then each
x;j(t) is uniformly continuous ol — 7, + ). From Eq.(1), it
Then, follows that eachx;(t) and then||x(t)|? is uniformly con-
. . tinuous on[0,+ ). Using Eq.(20), it must follow that
E()=—dlxt)|? (19 _
i} im x(0)][2=0,
for t=0. Clearly,E(t) is monotone decreasing. SinEét) is t—+oo
bounded and following Eq16),
and so
+
fo m(s)ds<+e  (i,j=1,...n), lim x(t)=0 (i=1,...n).

t—+x

then, E(t) must be bounded. Thus, there must exist & conciearly, there must exist a constant vectdre R? such that
stantE, such that

lim x(t)=x*.
lim E(t)=E,. to o
t—+ow
It is easy to check that* is an equilibrium point of Eq(1)
From Eq.(19) we have, in RY.. This completes the proof.
The condition(16) requires that the delays are in thé
\|5<(t)||2$— Eﬁ(t), space. Thus, the delays will decay as time approaches infin-

ity. Decaying of delays in neural networks seems reasonable,
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Global Attractivity and Complete Stability Network with delay

20
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Components of x
N
N [4,]

-
(3

-

0.5 _
0 i
20 0 0.5 1 1.5 2 25 3 35 4
time t
FIG. 1. Global attractivity and complete stability. FIG. 2. Convergence of network with delayt)=e™".

since delays occur usually at the beginning of the operationgjence of simulation, we assumgt)=0 (i=1,2). The part

of networks due to the hardware characteristics such asgntained in the square shown in the figure is theSsdt

switqhing delays, parameter variability, parasitic capacitancggntains all the equilibrium points of the networR2).

and inductance, etc. o Among these equilibrium points, (6,0) and (0,6) are stable,
If we let D=1 in Theorem 2, we have following simple e (0,0) and (2,2) are unstable. This example also shows

result. _ that in a completely stable neural network, stable and un-
Co.rollary 2. Suppose th_e networkl) is bounded. If A giapje equilibrium points can coexist in the network. Existing

+B) is a symmetrical matrix, and unstable directions in the state space of a neural networks is

r(el? (ij=1 n) essential for certain neural computatid2g].
4 ' ' S Example 2 Consider the following ten-dimensional
then the networkl) is completely stable. Lotka-Volterra neural network with one delay,
V. EXAMPLES

X=X hi=xi(0) = 3 OGO+t (0]},

In this section, we will employ some examples to further
illustrate the above theory.
Example 1 Consider the two-dimensional network
(i=1,...,10, (22
X1 (1) =X1 ({3 = X3 (1) +0.5; (1) = X[ t— 73 (D ]},
Network without delay

Xo(1) =Xa(1){3—Xa(t) = Xg[t— 75(1) ]+ 0.5%,(1)}  (21) 5

for t=0, where 7;(t) (i=1,2) are bounded non-negative
continuous functions. It is easy to check that the conditions
of Theorem 1 are satisfied. Thus, it is bounded. By Theorem
1, it can be calculated that there is a compact set

4+

S={0=x;<6; O0=<x,<6},

which globally attracts all the trajectories of the network.
Clearly, all the equilibrium points iRi of the network must
be located in the seb. In fact, we can calculate that this
network has four equilibrium points iRi . They are (0,0),

Components of x
N

(6,0), (0,6), and (2,2). Clearly, they are all locatedSinf 0

ri(t)eL? (i=1,2), sayr(t)=e"' (i=1,2), then the condi-

tions of Theorem 2 are satisfied and the netw(zhk) is 1 i : . ; : ; ;

completely stable. & BB i 15 i n12e ‘ S
Figure 1 shows the simulation results of the global attrac-

tivity and complete stability of the network. For the conve- FIG. 3. Convergence of network without delay.
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fort=0, whereh;=0.5(11-i) (i=1,...,10), and theelay the positive regime if the initial conditions are positive. Us-
r(t)=e 'eL2 This network satisfies the conditions of ing this property together with the development of functional
Theorem 1 and Theorem 2. It is completely stable. Figure Zlifferential equation theory, we are able to establish Theorem
shows the simulation results for the convergence of the tral that provides conditions for nondivergence and global at-
jectory with initial condition ;=1 (i=1,...,10) fort tractivity based on local inhibition of the networks. Under
e[—1,0]. these nondivergence conditions, the global attractive sets of
If we let the delayr(t)=0 in the network(22), this net- the networks can be explicitly calculated. The conditions
work can perform as a “winner-take-all” functiopl—3].  9iven in Theorem 1 are sufficient conditions. It may be pos-
Figure 3 shows the corresponding delay-free simulation resible and will be interesting to _fqrther relax these conditions
sult to Fig. 2. to be both necessary and sufficient.
In Theorem 2, with some sense of symmetry conditions
V. CONCLUSIONS attached to the networks connection matrix, complete stabil-
ity of the network can be achieved, by assuming the delays
In this paper, we have studied the dynamic stability ofare in thelL2 space. It requires the delays to decay along with
general recurrent Lotka-Volterra neural networks with de-the evolution of time. This decaying delay assumption is a
lays. We have addressed three basic dynamical properties fegasonable assumption used in certain applications. An inter-
this class of networks: nondivergence, attractivity, and comesting area for further exploration is to establish if the net-
plete stability. The class of networks, considered in this pawork can still retain the complete stability property when the
per, possess the property that the trajectories will remain icondition that the delays are Irt? space is removed.
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